Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
1.
Aging (Albany NY) ; 16(1): 106-128, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38157259

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) lack efficacious treatment. Jian-Pi-Yi-Shen formula (JPYSF) has demonstrated significant clinical efficacy in treating CKD for decades. However, its renoprotective mechanism has not been fully elucidated. This study aimed to determine whether JPYSF could delay renal fibrosis progression in CKD by restoring nicotinamide adenine dinucleotide (NAD+) biosynthesis. METHODS: Adenine-diet feeding was used to model CKD in C57BL/6 mice. JPYSF was orally administered for 4 weeks. Human proximal tubular epithelial cells (HK-2) cells were stimulated with transforming growth factor-ß1 (TGF-ß1) with or without JPYSF treatment. Renal function of mice was assessed by serum creatinine and blood urea nitrogen levels. Renal histopathological changes were assessed using Periodic acid-Schiff and Masson's trichrome staining. Cell viability was assessed using a cell counting kit-8 assay. NAD+ concentrations were detected by a NAD+/NADH assay kit. Western blotting, immunohistochemistry, and immunofluorescence were employed to examine fibrosis-related proteins and key NAD+ biosynthesis enzymes expression in the CKD kidney and TGF-ß1-induced HK-2 cells. RESULTS: JPYSF treatment could not only improve renal function and pathological injury but also inhibit renal fibrosis in CKD mice. Additionally, JPYSF reversed fibrotic response in TGF-ß1-induced HK-2 cells. Moreover, JPYSF rescued the decreased NAD+ content in CKD mice and TGF-ß1-induced HK-2 cells through restoring expression of key enzymes in NAD+ biosynthesis, including quinolinate phosphoribosyltransferase, nicotinamide mononucleotide adenylyltransferase 1, and nicotinamide riboside kinase 1. CONCLUSIONS: JPYSF alleviated renal fibrosis in CKD mice and reversed fibrotic response in TGF-ß1-induced HK-2 cells, which may be related to the restoration of NAD+ biosynthesis.


Assuntos
NAD , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Fibrose , Rim/patologia , Camundongos Endogâmicos C57BL , NAD/biossíntese , Insuficiência Renal Crônica/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793337

RESUMO

The biosynthetic routes leading to de novo nicotinamide adenine dinucleotide (NAD+) production are involved in acute kidney injury (AKI), with a critical role for quinolinate phosphoribosyl transferase (QPRT), a bottleneck enzyme of de novo NAD+ biosynthesis. The molecular mechanisms determining reduced QPRT in AKI, and the role of impaired NAD+ biosynthesis in the progression to chronic kidney disease (CKD), are unknown. We demonstrate that a high urinary quinolinate-to-tryptophan ratio, an indirect indicator of impaired QPRT activity and reduced de novo NAD+ biosynthesis in the kidney, is a clinically applicable early marker of AKI after cardiac surgery and is predictive of progression to CKD in kidney transplant recipients. We also provide evidence that the endoplasmic reticulum (ER) stress response may impair de novo NAD+ biosynthesis by repressing QPRT transcription. In conclusion, NAD+ biosynthesis impairment is an early event in AKI embedded with the ER stress response, and persistent reduction of QPRT expression is associated with AKI to CKD progression. This finding may lead to identification of noninvasive metabolic biomarkers of kidney injury with prognostic and therapeutic implications.


Assuntos
Injúria Renal Aguda/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Rim/metabolismo , NAD/biossíntese , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pentosiltransferases/metabolismo , Ácido Quinolínico/urina , Triptofano/urina
3.
Hum Exp Toxicol ; 40(12_suppl): S666-S675, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34752167

RESUMO

Background: Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in the salvage pathway of mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis. Through its NAD+-biosynthetic activity, NAMPT is able to regulate the development of hepatic steatosis and inflammation induced by diet or alcohol. However, the roles NAMPT plays in the development of liver fibrosis remain obscure. Purpose: To investigate the roles of NAMPT-mediated NAD+ biosynthesis in hepatic stellate cell (HSC) activation and liver fibrosis. Research Design: Realtime RT-PCR and western blot analyses were performed to analyze the expression of profibrogenic genes. Sirius red staining was conducted to examine the fibrosis in liver. Mouse liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl4) 2 times a week for 6 weeks. Adenovirus-mediated NAMPT overexpression or nicotinamide mononucleotide (NMN) administration was carried out to study the effects of elevation of NAD+ levels on protecting CCl4-induced liver fibrosis in mice. LX2 cells or primary HSCs were used to study the role of NAMPT overexpression or NMN treatment in reducing profibrogenic gene expression in vitro. ResultsCCl4 administration suppresses NAMPT expression in liver and reduces hepatic NAD+ content. Tgfß1 treatment decreases intracellular NAD+ levels and NAMPT expression in LX2 cells. Adenovirus-mediated NAMPT overexpression augments liver NAD+ levels, inhibits HSC activation and alleviates CCl4-induced liver fibrosis in mice. Administration of NMN also suppresses HSC activation and protects against CCl4-induced liver fibrosis in mice. Conclusions: NAMPT-mediated NAD+ biosynthesis inhibits HSC activation and protects against CCl4-induced liver fibrosis.


Assuntos
Intoxicação por Tetracloreto de Carbono/complicações , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/etiologia , NAD/biossíntese , Nicotinamida Fosforribosiltransferase/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Intoxicação por Tetracloreto de Carbono/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL
4.
Genes (Basel) ; 12(11)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34828382

RESUMO

Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , NAD/biossíntese , Esclerose Amiotrófica Lateral/genética , Doença de Charcot-Marie-Tooth/genética , Relógios Circadianos , Ensaios Clínicos como Assunto , Reparo do DNA , Metabolismo Energético , Humanos
5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638936

RESUMO

Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD+ also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health and disease, studying NAD+ metabolism has become essential to monitor genetic- and/or drug-induced perturbations related to metabolic status and diseases (such as ageing, cancer or obesity), and its possible therapies. Here, we present a strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of the NAD+ metabolome in biological samples. In this method, hydrophilic interaction chromatography (HILIC) was used to separate a total of 18 metabolites belonging to pathways leading to NAD+ biosynthesis, including precursors, intermediates and catabolites. As redox cofactors are known for their instability, a sample preparation procedure was developed to handle a variety of biological matrices: cell models, rodent tissues and biofluids, as well as human biofluids (urine, plasma, serum, whole blood). For clinical applications, quantitative LC-MS/MS for a subset of metabolites was demonstrated for the analysis of the human whole blood of nine volunteers. Using this developed workflow, our methodology allows studying NAD+ biology from mechanistic to clinical applications.


Assuntos
Metaboloma , NAD/biossíntese , Plasma/metabolismo , Soro/metabolismo , Espectrometria de Massas em Tandem/métodos , Urina/fisiologia , Animais , Doadores de Sangue , Cromatografia Líquida/métodos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Monitorização Fisiológica/métodos , Oxirredução , Projetos Piloto , Plasma/química , Soro/química , Urina/química
6.
Nutrients ; 13(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684434

RESUMO

Despite the progress in the development of new anticancer strategies, cancer is rapidly spreading around the world and remains one of the most common diseases. For more than 40 years, doxorubicin has been widely used in the treatment of solid and hematological tumors. At the same time, the problem of its cardiotoxicity remains unresolved, despite the high efficiency of this drug. Symptomatic therapy is used as a treatment for side-effects of doxorubicin or pathological conditions that have already appeared in their background. To date, there are no treatment methods for doxorubicin cardiomyopathy as such. A drug such as nicotinamide riboside can play an important role in solving this problem. Nicotinamide riboside is a pyridine nucleoside similar to vitamin B3 that acts as a precursor to NAD+. There is no published research on nicotinamide riboside effects on cardiomyopathy, despite the abundance of works devoted to the mechanisms of its effects in various pathologies. The review analyzes information about the effects of nicotinamide riboside on various experimental models of pathologies, its role in the synthesis of NAD+, and also considers the possibility and prospects of its use for the prevention of doxorubicin cardiomyopathy.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiotônicos/uso terapêutico , Doxorrubicina/efeitos adversos , Niacinamida/análogos & derivados , Compostos de Piridínio/uso terapêutico , Animais , Biomarcadores , Cardiomiopatias/metabolismo , Cardiomiopatias/prevenção & controle , Cardiotônicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Redes e Vias Metabólicas , NAD/biossíntese , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Compostos de Piridínio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuínas/metabolismo
7.
Sci Rep ; 11(1): 19648, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608200

RESUMO

The gut microbiota has tremendous potential to affect the host's health, in part by synthesizing vitamins and generating nutrients from food that is otherwise indigestible by the host. 1,5-Anhydro-D-fructose (1,5-AF) is a monosaccharide with a wide range of bioactive potentials, including anti-oxidant, anti-inflammatory, and anti-microbial effects. Based on its potential benefits and minimal toxicity, it is anticipated that 1,5-AF will be used as a dietary supplement to support general health. However, the effects of 1,5-AF on the gut microbiota are yet to be clarified. Here, using an unbiased metagenomic approach, we profiled the bacterial taxa and functional genes in the caecal microbiota of mice fed a diet containing either 2% 1,5-AF or a reference sweetener. Supplementation with 1,5-AF altered the composition of the gut microbiota, enriching the proportion of Faecalibacterium prausnitzii. 1,5-AF also altered the metabolomic profile of the gut microbiota, enriching genes associated with nicotinamide adenine dinucleotide biosynthesis. These findings support the potential benefits of 1,5-AF, but further studies are required to clarify the impact of 1,5-AF on health and disease.


Assuntos
Frutose/análogos & derivados , Microbioma Gastrointestinal , Animais , Dieta , Suplementos Nutricionais , Frutose/metabolismo , Frutose/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metagenoma , Metagenômica/métodos , Camundongos , NAD/biossíntese , Nutrientes/biossíntese , Vitaminas/biossíntese
8.
Mech Ageing Dev ; 199: 111569, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509469

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme in redox reactions. NAD+ is also important in cellular signalling as it is consumed by PARPs, SARM1, sirtuins and CD38. Cellular NAD+ levels regulate several essential processes including DNA repair, immune cell function, senescence, and chromatin remodelling. Maintenance of these cellular processes is important for healthy ageing and lifespan. Interestingly, the levels of NAD+ decline during ageing in several organisms, including humans. Declining NAD+ levels have been linked to several age-related diseases including various metabolic diseases and cognitive decline. Decreasing tissue NAD+ concentrations have been ascribed to an imbalance between biosynthesis and consumption of the dinucleotide, resulting from, for instance, reduced levels of the rate limiting enzyme NAMPT along with an increased activation state of the NAD+-consuming enzymes PARPs and CD38. The progression of some age-related diseases can be halted or reversed by therapeutic augmentation of NAD+ levels. NAD+ metabolism has therefore emerged as a potential target to ameliorate age-related diseases. The present review explores how ageing affects NAD+ metabolism and current approaches to reverse the age-dependent decline of NAD+.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Envelhecimento , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , NAD , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Descoberta de Drogas , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , NAD/biossíntese , NAD/metabolismo , Oxirredução , Transdução de Sinais
9.
Mech Ageing Dev ; 199: 111567, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34517020

RESUMO

NAD+ is a fundamental molecule in human life and health as it participates in energy metabolism, cell signalling, mitochondrial homeostasis, and in dictating cell survival or death. Emerging evidence from preclinical and human studies indicates an age-dependent reduction of cellular NAD+, possibly due to reduced synthesis and increased consumption. In preclinical models, NAD+ repletion extends healthspan and / or lifespan and mitigates several conditions, such as premature ageing diseases and neurodegenerative diseases. These findings suggest that NAD+ replenishment through NAD+ precursors has great potential as a therapeutic target for ageing and age-predisposed diseases, such as Alzheimer's disease. Here, we provide an updated review on the biological activity, safety, and possible side effects of NAD+ precursors in preclinical and clinical studies. Major NAD+ precursors focused on by this review are nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and the new discovered dihydronicotinamide riboside (NRH). In summary, NAD+ precursors have an exciting therapeutic potential for ageing, metabolic and neurodegenerative diseases.


Assuntos
Envelhecimento , Doença de Alzheimer/tratamento farmacológico , NAD , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/farmacologia , Compostos de Piridínio/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Sobrevivência Celular/fisiologia , Desenvolvimento de Medicamentos , Metabolismo Energético/fisiologia , Humanos , NAD/biossíntese , NAD/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , Compostos de Piridínio/metabolismo , Transdução de Sinais/fisiologia
10.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330829

RESUMO

The evolutionary context of why caloric restriction (CR) activates physiological mechanisms that slow the process of aging remains unclear. The main goal of this analysis was to identify, using metabolomics, the common pathways that are modulated across multiple tissues (brown adipose tissue, liver, plasma, and brain) to evaluate two alternative evolutionary models: the "disposable soma" and "clean cupboards" ideas. Across the four tissues, we identified more than 10,000 different metabolic features. CR altered the metabolome in a graded fashion. More restriction led to more changes. Most changes, however, were tissue specific, and in some cases, metabolites changed in opposite directions in different tissues. Only 38 common metabolic features responded to restriction in the same way across all four tissues. Fifty percent of the common altered metabolites were carboxylic acids and derivatives, as well as lipids and lipid-like molecules. The top five modulated canonical pathways were l-carnitine biosynthesis, NAD (nicotinamide adenine dinucleotide) biosynthesis from 2-amino-3-carboxymuconate semialdehyde, S-methyl-5'-thioadenosine degradation II, NAD biosynthesis II (from tryptophan), and transfer RNA (tRNA) charging. Although some pathways were modulated in common across tissues, none of these reflected somatic protection, and each tissue invoked its own idiosyncratic modulation of pathways to cope with the reduction in incoming energy. Consequently, this study provides greater support for the clean cupboards hypothesis than the disposable soma interpretation.


Assuntos
Restrição Calórica , Carnitina/biossíntese , Metabolismo Energético/fisiologia , NAD/biossíntese , RNA de Transferência/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA de Transferência/genética , Distribuição Aleatória , Distribuição Tecidual
11.
Mech Ageing Dev ; 198: 111545, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302821

RESUMO

Strategies to correct declining nicotinamide adenine dinucleotide (NAD+) levels in neurological disease and biological ageing are promising therapeutic candidates. These strategies include supplementing with NAD+ precursors, small molecule activation of NAD+ biosynthetic enzymes, and treatment with small molecule inhibitors of NAD+ consuming enzymes such as CD38, SARM1 or members of the PARP family. While these strategies have shown efficacy in animal models of neurological disease, each of these has the mechanistic potential for adverse events that could preclude their preclinical use. Here, we discuss the implications of these strategies for treating neurological diseases, including potential off-target effects that may be unique to the brain.


Assuntos
Envelhecimento , Terapia de Alvo Molecular , NAD , Doenças do Sistema Nervoso , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/fisiologia , Humanos , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , NAD/biossíntese , NAD/metabolismo , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/terapia , Medição de Risco
12.
Toxicol Lett ; 349: 115-123, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089817

RESUMO

Cisplatin, the most widely used platinum-based anticancer drug, often causes progressive and irreversible sensorineural hearing loss in cancer patients. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. Nicotinamide adenine dinucleotide (NAD+), a co-substrate for the sirtuin family and PARPs, has emerged as a potent therapeutic molecular target in various diseases. In our investigates, we observed that NAD+ level was changed in the cochlear explants of mice treated with cisplatin. Supplementation of a specific inhibitor (TES-1025) of α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), a rate-limiting enzyme of NAD+de novo synthesis pathway, promoted SIRT1 activity, increased mtDNA contents and enhanced AMPK expression, thus significantly reducing hair cells loss and deformation. The protection was blocked by EX527, a specific SIRT1 inhibitor. Meanwhile, the use of NMN, a precursor of NAD+ salvage synthesis pathway, had shown beneficial effect on hair cell under cisplatin administration, effectively suppressing PARP1. In vivo experiments confirmed the hair cell protection of NAD+ modulators in cisplatin treated mice and zebrafish. In conclusion, we demonstrated that modulation of NAD+ biosynthesis via the de novo synthesis pathway and the salvage synthesis pathway could both prevent ototoxicity of cisplatin. These results suggested that direct modulation of cellular NAD+ levels could be a promising therapeutic approach for protection of hearing from cisplatin-induced ototoxicity.


Assuntos
Inibidores Enzimáticos/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Perda Auditiva/prevenção & controle , Audição/efeitos dos fármacos , NAD/biossíntese , Ototoxicidade/prevenção & controle , Sirtuína 1/metabolismo , Animais , Animais Geneticamente Modificados , Carboxiliases/antagonistas & inibidores , Carboxiliases/metabolismo , Cisplatino , Modelos Animais de Doenças , Ativação Enzimática , Células Ciliadas Auditivas/enzimologia , Células Ciliadas Auditivas/patologia , Perda Auditiva/induzido quimicamente , Perda Auditiva/enzimologia , Perda Auditiva/fisiopatologia , Sistema da Linha Lateral/efeitos dos fármacos , Sistema da Linha Lateral/enzimologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Ototoxicidade/enzimologia , Ototoxicidade/etiologia , Ototoxicidade/fisiopatologia , Peixe-Zebra
13.
Nutrients ; 13(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068917

RESUMO

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.


Assuntos
Antineoplásicos/farmacologia , NAD/biossíntese , NAD/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Vias Biossintéticas , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas , Dano ao DNA , Reparo do DNA , Humanos , Niacina/farmacologia , Niacinamida/farmacologia , Nicotinamida Fosforribosiltransferase , Estresse Oxidativo
15.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925372

RESUMO

Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that regulates metabolic function. A decrease in both mitochondria biogenesis and NAD+ is a characteristic of metabolic diseases, and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD+ pool. Here we discuss how PGC-1α is involved in the NAD+ synthesis pathway and metabolism, as well as the strategy for increasing the NAD+ pool in the metabolic disease state.


Assuntos
Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Humanos , Doenças Metabólicas/fisiopatologia , Mitocôndrias/fisiologia , NAD/biossíntese , NAD/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Transdução de Sinais/fisiologia , Sirtuínas/metabolismo , Fatores de Transcrição/metabolismo
17.
Biotechnol Bioeng ; 118(2): 770-783, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058166

RESUMO

Clostridium tyrobutyricum produces butyric and acetic acids from glucose. The butyric acid yield and selectivity in the fermentation depend on NADH available for acetate reassimilation to butyric acid. In this study, benzyl viologen (BV), an artificial electron carrier that inhibits hydrogen production, was used to increase NADH availability and butyric acid production while eliminating acetic acid accumulation by facilitating its reassimilation. To better understand the mechanism of and find the optimum condition for BV effect on enhancing acetate assimilation and butyric acid production, BV at various concentrations and addition times during the fermentation were studied. Compared with the control without BV, the addition of 1 µM BV increased butyric acid production from glucose by ∼50% in yield and ∼29% in productivity while acetate production was completely inhibited. Furthermore, BV also increased the coutilization of glucose and exogenous acetate for butyric acid production. At a concentration ratio of acetate (g/L) to BV (mM) of 4, both acetate assimilation and butyrate biosynthesis increased with increasing the concentrations of BV (0-6.25 µM) and exogenous acetate (0-25 g/L). In a fed-batch fermentation with glucose and ∼15 g/L acetate and 3.75 µM BV, butyrate production reached 55.9 g/L with productivity 0.93 g/L/h, yield 0.48 g/g, and 97.4% purity, which would facilitate product purification and reduce production cost. Manipulating metabolic flux and redox balance via BV and acetate addition provided a simple to implement metabolic process engineering approach for butyric acid production from sugars and biomass hydrolysates.


Assuntos
Acetatos/metabolismo , Benzil Viologênio/farmacologia , Ácido Butírico/metabolismo , Clostridium tyrobutyricum/metabolismo , NAD/biossíntese
18.
Metabolism ; 114: 154402, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33053398

RESUMO

OBJECTIVE: Nicotinamide adenine dinucleotide (NAD) is an essential molecule participating in multiple physiological and pathophysiological processes. In diabetic cornea, the NAD+-consuming enzyme SIRT1 was down-regulated and contributed to the delayed wound healing. However, the impact of hyperglycemia on corneal NAD+ biosynthesis remained elusive. This study was to investigate the relationship of NAD+ biosynthesis and the delayed corneal wound healing in diabetic mice. METHODS: Type 1 diabetes mellitus (DM) mice were induced by streptozotocin and corneal epithelial wound healing models were constructed by epithelial scraping. The NAD+ contents of corneal epithelium were measured using the NAD/NADH quantification kit. Expression of key enzymes involved in the NAD+ biosynthesis in type 1 DM mice and type 2 DM patients were analyzed. The nicotinamide phosphoribosyltransferase (NAMPT)-specific siRNA and the selective inhibitor FK866 were used to achieve the blockade of NAMPT, whereas exogenous NAD+ and its precursors were replenished to the corneal epithelial cells and DM mice. RESULTS: Hyperglycemia attenuated NAD+ content and NAMPT expression in the corneal epithelium of both type 1 DM mice and type 2 DM patients. Local knockdown of NAMPT by siRNA or FK866 consistently recapitulated the delayed corneal epithelial wound healing in normal mice. Moreover, NAD+ replenishment recovered the impaired proliferation and migration capacity by either FK866 or high glucose treatment in cultured corneal epithelial cells. Furthermore, in DM mice, NAD+ and its precursors nicotinamide mononucleotide and nicotinamide riboside also facilitated corneal epithelial and nerve regeneration, accompanied with the recovered expression of SIRT1 and phosphorylated EGFR, AKT, and ERK1/2 in epithelium and corneal sensitivity. CONCLUSION: Hyperglycemia-reduced NAD+ biosynthesis and contributed to the impaired epithelial wound healing in DM mice. The replenishment of NAD+ and its precursors facilitated diabetic corneal wound healing and nerve regeneration, which may provide a novel therapeutic strategy for the treatment of diabetic corneal complications.


Assuntos
Lesões da Córnea/metabolismo , Diabetes Mellitus Experimental/metabolismo , Epitélio Corneano/lesões , Hiperglicemia/metabolismo , NAD/biossíntese , Cicatrização/fisiologia , Animais , Córnea/metabolismo , Epitélio Corneano/metabolismo , Camundongos
19.
Hum Cell ; 34(1): 177-186, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32936424

RESUMO

The aim of this study was to investigate the genes associated with ferroptosis and the progression of hepatocellular carcinoma (HCC). The RNA sequencing data of erastin-induced ferroptosis in HCC cells were downloaded from the Sequence Read Archive database with accession number SRP119173. The microarray dataset GSE89377 of HCC progression was downloaded from the Gene Expression Omnibus database. The ferroptosis-related genes were screened by differential analysis and HCC progression-related genes were screened by cluster analysis using Mfuzz. Then, the genes associated with ferroptosis and HCC progression were screened by Venn analysis, followed by functional enrichment, protein-protein interaction (PPI) analysis, and transcription factor (TF) prediction. Finally, survival analysis was performed using data from the Cancer Genome Atlas database. A total of 33 upregulated and 52 downregulated genes associated with HCC progression and ferroptosis were obtained, and these genes were significantly involved in the negative regulation of ERK1 and ERK2 cascades; the NAD biosynthetic process; alanine, aspartate, and glutamate metabolism; and other pathways. The PPI network contained 52 genes and 78 interactions, of which, cell division cycle 20 (CDC20) and heat shock protein family B (small) member 1 (HSPB1) were hub genes found in higher degrees. Among the 85 genes associated with HCC progression and ferroptosis, two TFs (activating TF 3 (ATF3) and HLF) were predicted, with HSPB1 targeted by ATF3. In addition, 26 genes that were found to be significantly correlated with the overall survival of HCC patients were screened, including CDC20 and thyroid hormone receptor interactor 13. Several genes associated with HCC progression and ferroptosis were screened based on a comprehensive bioinformatics analysis. These genes played roles in HCC progression and ferroptosis via the negative regulation of the ERK1 and ERK2 cascades; the NAD biosynthetic process; and alanine, aspartate, and glutamate metabolism. ATF3 and HSPB1 played important roles in HCC progression and ferroptosis, with HSPB1 possibly regulated by ATF3.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Carcinoma Hepatocelular/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica/genética , Estudos de Associação Genética , Proteínas de Choque Térmico/fisiologia , Neoplasias Hepáticas/genética , Chaperonas Moleculares/fisiologia , Alanina/metabolismo , Progressão da Doença , Ácido Glutâmico/metabolismo , Humanos , Neoplasias Hepáticas/mortalidade , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , NAD/biossíntese , Taxa de Sobrevida
20.
Acta Physiol (Oxf) ; 231(3): e13551, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32853469

RESUMO

Nicotinamide adenine dinucleotide (NAD) is an abundant cofactor that plays crucial roles in several cellular processes. NAD can be synthesized de novo starting with tryptophan, or from salvage pathways starting with NAD precursors like nicotinic acid (NA), nicotinamide (NAM) or nicotinamide riboside (NR), referred to as niacin/B3 vitamins, arising from dietary supply or from cellular NAD catabolism. Given the interconversion between its oxidized (NAD+ ) and reduced form (NADH), NAD participates in a wide range of reactions: regulation of cellular redox status, energy metabolism and mitochondrial biogenesis. Plus, NAD acts as a signalling molecule, being a cosubstrate for several enzymes such as sirtuins, poly-ADP-ribose-polymerases (PARPs) and some ectoenzymes like CD38, regulating critical biological processes like gene expression, DNA repair, calcium signalling and circadian rhythms. Given the large number of mitochondria present in cardiac tissue, the heart has the highest NAD levels and is one of the most metabolically demanding organs. In several models of heart failure, myocardial NAD levels are depressed and this depression is caused by mitochondrial dysfunction, metabolic remodelling and inflammation. Emerging evidence suggests that regulating NAD homeostasis by NAD precursor supplementation has therapeutic efficiency in improving myocardial bioenergetics and function. This review provides an overview of the latest understanding of the different NAD biosynthesis pathways, as well as its role as a signalling molecule particularly in cardiac tissue. We highlight the significance of preserving NAD equilibrium in various models of heart diseases and shed light on the potential pharmacological interventions aiming to use NAD boosters as therapeutic agents.


Assuntos
Cardiopatias/metabolismo , Mitocôndrias/metabolismo , NAD/biossíntese , Animais , Metabolismo Energético/fisiologia , Epitélio/metabolismo , Humanos , Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...